Resilience of South African Grasslands and Savannas to Degradation
Roelof Oomen¹, Anja Linstädter², Jan Ruppert², Katharina Brüser¹, Jürgen Schellberg¹, Frank Ewert¹
¹University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Germany
²University of Cologne, Range Ecology and Range Management, Germany

Introduction
- In semi-arid rangeland systems, vegetation is principally affected by livestock management and variable environmental conditions.
- These drivers impact the resilience of such systems, a decrease of which can increase the risk of a system shift towards unfavourable degraded or bush encroached states.
- Our aim is to analyse and model rangeland vegetation in order to assess the impact of management and environmental conditions on the resilience and vulnerability of rangeland systems.
- We hypothesise that tenure systems differ on resilience indicators standing biomass, bare ground and extent of degradation zones around water points.

Materials and Methods - Sites
We studied two sites in South Africa, representing the grassland and the savanna biome, respectively. At each site, three land tenure systems were studied, which differed in access regime to pastures, subsistence level, and livestock management strategies.

<table>
<thead>
<tr>
<th>Biome</th>
<th>Management</th>
<th>Tenure system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commercial (CO)</td>
<td>Trust farm (TF)</td>
</tr>
<tr>
<td>Savanna</td>
<td>Livestock rotation</td>
<td>Rotational</td>
</tr>
<tr>
<td>Stocking density</td>
<td>Average</td>
<td>High</td>
</tr>
<tr>
<td>Grassland</td>
<td>Livestock rotation</td>
<td>Rotational</td>
</tr>
<tr>
<td>Stocking density</td>
<td>Average</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Two to three farms/communities were selected for each tenure system in each region.
- Per farm one camp (a usually fenced-off subdivision of the total grazing area) was selected containing one water point.
- From the water point a transect was measured (Fig. 1) along the degradation gradient until average field conditions were reached.
- Outside the degradation transect, 9 randomly placed plots were sampled (Fig. 1).

Materials and Methods - Measurements
- In all plots compressed sward height (CSH) was measured using a rising plate meter.
- For each farm 16 sub-plot biomass samples were taken, together with CSH measurements, to calibrate CSH to biomass.
- In all plots the percentage of bare ground was estimated.

Results
- Tenure systems did not show a difference in length of the degradation gradient as calculated according to Fig. 2.
- Significant effects of tenure system on biomass of random plots were found in savanna, but not in grassland systems (Fig. 3).
- No significant effects of tenure system on bare ground of random plots could be identified in either system (Fig. 4).

Figure 1: Position of the transect (blue) and random (red) sample plots within a camp of a commercial farm in the savanna system.

Conclusion and future work
- Differences between tenure systems on the resilience indicators standing biomass, bare ground and degradation gradient length could only be shown for biomass in the savanna system.
- This study will be extended with analyses of species composition (Linstädter et al., 2011) and remote sensing data of spatio-temporal vegetation patterns (Brüser et al., 2011).
- A rangeland model to study the resilience of rangelands in response to management and climate change is in development.
- Using the rangeland model scenario analyses will be made of management options to improve resilience of rangeland systems.

Contact
Roelof Oomen
Institute of Crop Science and Resource Conservation
University of Bonn
Katzenburgweg 5, 53115 Bonn, Germany
roelof.oomen@uni-bonn.de

References